Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

نویسندگان

  • Diana Urrego
  • Julieta Troncoso
  • Alejandro Múnera
چکیده

This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3 weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the ...

متن کامل

Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans.

The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in...

متن کامل

Motor cortex layer V pyramidal neurons exhibit dendritic regression, spine loss, and increased synaptic excitation in the presymptomatic hSOD1(G93A) mouse model of amyotrophic lateral sclerosis.

Motor cortex layer V pyramidal neurons (LVPNs) regulate voluntary control of motor output and selectively degenerate (along with lower motor neurons) in amyotrophic lateral sclerosis. Using dye-filling and whole-cell patch clamping in brain slices, together with high-resolution spinning disk confocal z-stack mosaics, we characterized the earliest presymptomatic cortical LVPN morphologic and ele...

متن کامل

Spine Enlargement of Pyramidal Tract-Type Neurons in the Motor Cortex of a Rat Model of Levodopa-Induced Dyskinesia

Growing evidence suggests that abnormal synaptic plasticity of cortical neurons underlies levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). Spine morphology reflects synaptic plasticity resulting from glutamatergic transmission. We previously reported that enlargement of the dendritic spines of intratelencephalic-type (IT) neurons in the primary motor cortex (M1) is linked to the d...

متن کامل

The effect of epidural compression on cerebral cortex: a rat model.

We developed a rat model of epidural plastic bead implantation to study the effect of physical compression on the cerebral cortex. Epidural implantation of a bead of appropriate size compressed the underlying sensorimotor cortex without apparent ischemia, since the capillary density of the cortex was increased. Although the thickness of all layers of the compressed cortex was significantly decr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015